
The Silent Helper: The Impact of Continuous
Integration on Code Reviews

Nathan Cassee
Eindhoven University of Technology

The Netherlands
n.w.cassee@tue.nl

Bogdan Vasilescu
Carnegie Mellon University

USA
vasilescu@cmu.edu

Alexander Serebrenik
Eindhoven University of Technology

The Netherlands
a.serebrenik@tue.nl

Abstract—The adoption of Continuous Integration (CI) has
been shown multiple benefits for software engineering practices
related to build, test and dependency management. However, the
impact of CI on the social aspects of software development has
been overlooked so far. Specifically, we focus on studying the
impact of CI on a paradigmatic socio-technical activity within
the software engineering domain, namely code reviews.

Indeed, one might expect that the introduction of CI allows
reviewers to focus on more challenging aspects of software quality
that could not be assessed using CI. To assess validity of this
expectation we conduct an exploratory study of code reviews
in 685 GITHUB projects that have adopted Travis-CI, the most
popular CI-service on GITHUB.

We observe that with the introduction of CI, pull requests are
being discussed less. On average CI saves roughly half a comment
per pull request. This decrease in amount of discussion, however,
cannot be explained by the decrease in the number of updates of
the pull requests. This means that in presence of CI developers
perform the same amount of work by communicating less, giving
rise to the idea of CI as a silent helper.

I. INTRODUCTION

Notice 13th of December 2022

In the original printed version of the paper there was
a mistake in the calculation of impact of CI after
a year. Originally we reported a reduction of .85
general comments and .23 review comments after a
year, this should be .5 general comments and .2 review
comments. This mistake has been corrected in this
version and any updated text has been marked green.

Continuous integration (CI), the software engineering prac-
tice typically implemented as the automation and frequent
execution of the build and test steps with the goal of making
software integration easier, has long been popular. A diversity
of practitioner sources have been advocating for CI as a best
practice since the early to mid 2000s, ranging from blog
posts [1] and conference talks [2] to whole books [3].

More recently, researchers have began to study CI empiric-
ally, e.g., to understand its associated costs and benefits [4]–
[6], or assess its impact on developer productivity and software
quality [7], [8] (see Section II for more discussion of related
work). Often, these studies have found empirical evidence
supporting many wide-held beliefs about CI, but they have
also sometimes revealed differences between CI theory and

practice, or revealed a more nuanced picture of the impact
of CI than expected. For example, Hilton et al. [4] con-
firmed the belief that using CI correlates with higher release
frequency [4]. In contrast, Vassallo et al. [9] found many
examples of misuse of CI in practice, e.g., builds staying
broken for longer than usual on release branches, and failing
tests being skipped in subsequent builds to avoid the build
failure (the symptom) rather than fixing the cause [9].

However, while there has been prior research on the impact
of CI on different practices and outcomes, the focus has typ-
ically been on technical software development tasks with high
potential for automation, such as build, test, and dependency
management. What is often overlooked by researchers are
the social aspects of using CI as part of a complex socio-
technical system with humans in the loop. An illustrative
example is code review. Code review is one of the biggest
determinants of software quality [10], [11] and a necessary
gate-keeping mechanism in open-source communities, where
pull request contributions often come from external project
contributors [12]. Project maintainers often rely on automation
tools such as CI to help with the pull request review pro-
cess [7], [12], e.g., to check whether the code builds, the tests
pass, and the patch conforms to a linter-defined style guide.
In theory, this automation should save project maintainers
considerable effort and enable them to focus on other aspects
of the pull request, inherently manual to assess, such as project
fit, priority, adherence to non-functional requirements, and
design [12]–[15]. Does that happen? How much code review
effort, if any, does CI save maintainers in practice?

In this paper we report on an exploratory empirical study
that begins to answer this question. On a large sample of
GITHUB open-source projects using Travis-CI (the most pop-
ular cloud-based CI service [4]), we explore using quantitative
methods how pull request review discussions changed after the
introduction of CI. It is natural that process automation such
as CI can help with relatively easily automatable tasks such
as build and test. Here we go one step further, and quantify
to what extent this automation also translates to reductions in
the review burden of the project maintainers, as evidenced by
the change, on average, in the number of comments posted on
pull request threads.

There is high potential for effort savings. Indeed, social
coding platforms like GITHUB achieve a high level of trans-

parency by displaying a multitude of signals on individual
and project pages [16], [17]. In particular, for CI-enabled pull
requests on GITHUB, the CI build outcomes are displayed
prominently alongside each commit as cross () or check
() signs in the same user interface as the comments posted
by the submitter and project maintainers; these signals also
act as hyperlinks to the detailed build logs. Some projects
also display repository badges (e.g., ,)
indicating the CI outcome in real time and, similarly, linking
to the detailed build logs. Therefore, one could expect that this
high level of transparency could reduce the need for human
communication during pull request discussions. Our study
investigates whether and how much this happens in practice.

Indeed, we find that on average the amount of discussion
during pull request reviews, operationalized in multiple ways,
decreases over time after the introduction of CI. At the same
time, we find that this decrease in discussion effort cannot be
explained by a decrease in expected pull request updates after
review—the number of subsequent pull request commits after
the pull request has been opened is, on average, unaffected
by the adoption of CI. Based on our models, we estimate
that on average CI saves up to one review comment per pull
request, giving rise to the idea of continuous integration as a
silent helper, where some of the tasks traditionally executed
by human reviewers are now carried out by CI.

In summary, we contribute: a robust quantitative analysis
of the impact of adopting Travis-CI on pull request review
effort, on a large sample of GITHUB open-source projects;
and a discussion of results and implications. Furthermore, the
scripts and data used for the models are available online.1

II. RELATED WORK

Continuous Integration. CI has been introduced by Fowler
in a blog post in 2000, as means for the systematic integration
and verification of code changes [1]. Following the introduc-
tion of CI as a practice and the onset of CI services such as
Travis-CI, both closed and open-source software development
teams have started to use CI, as has been found by Vasilescu
et al. and Hilton et al. [4], [18]. The impact of CI on the
software development process is a topic of active research.
Stolberg discusses the process and results of integrating CI
in an industry project [19]. Hilton finds that developers want
easy to maintain, and flexible CI pipelines [20]. To better
understand the motivations of practitioners using CI, Pham
et al. interviewed open-source developers, finding several
possible improvements that could be applied to improve the
testing process [21]. Moreover, Rausch et al. analyzed the
build failures of 14 open-source Java projects and found that
most build failures are caused by test failures [22].

To understand how CI impacts software reviewing practices
Vasilescu et al. found that CI also allows integrators to
accept more outside contributions, without a decrease in code
quality [7]. Further work by Yu et al. concluded that in
addition to the build several technical and process variables

1http://tiny.cc/6kexhz

explain review acceptance [23]. Meanwhile Zhao et al. used
time-series analysis on a large set of open-source GITHUB
projects confirming earlier results about the benefits of CI,
such as a better adherence to best practices [8].

Code reviews. The notion of code inspections to improve
software quality was introduced by Fagan in 1976 [24]. Fagan
describes a process of line-by-line inspection of source code
during team-wide meetings. While this method has proven
to be effective [25], [26], it requires a significant amount of
human effort, hindering its adoption [27]. As opposed to the
very strict and formal method proposed by Fagan, Bacchelli
and Bird described a more lightweight, asynchronous and
flexible review process they call Modern Code Review [14].
Since then modern code review has been studied both in open-
source projects and closed source-projects. In an open-source
context Baysal et al. find that non-technical factors such as
developer tenure and organization impact the outcome of code
reviews [28]. Bavota and Russo have found that reviewed
code is significantly less likely to contain bugs, and that code
authored during a review is more readable than code authored
before the review [10]. In a similar vein McIntosh et al.
find that code review coverage shares a significant link with
software quality [11]. To better understand how integrators
review code Yu et al. investigated the latency of open-source
code reviews, coming to the conclusion that many process
related features impact the latency of code reviews [29]. Ebert
et al. attempted to find expressions of confusion in code
reviews, to further understand how confusion impacts code
reviews [30]. Beller et al. investigate what types of changes
are made during a code review, finding that most changes are
made to improve evolvability [31]. By analyzing discussions in
code reviews Tsay et al. found that not only do most changes
relate to evolvability, evolvability is also explicitly discussed
during a code review by both author and reviewer(s) [32].
Alami et al. [33] have interviewed 21 open source contributors
to understand how code reviews are applied. They find that
even though rejections are a part of code reviews, practitioners
choose to use code reviews to ensure code quality is improved.

In a closed-source context Tao et al. interviewed Microsoft
developers and found that developers tend to understand the
risk of a change, and the completeness of the change [34].
Also at Microsoft Bosu et al. used qualitative methods to
identify effective review comments and their features [35].
Furthermore, MacLeod et al. interviewed Microsoft developers
who stated that in addition to defect finding, motivations
for code reviews are knowledge sharing and improving code
quality [36]. Meanwhile Sadowski et al. provide quantitative
evidence of the modern code review process at Google, finding
that most reviews tend to be lightweight and include a low
number of reviewers [13]. In addition to the work by Sadowski
et al. Kononenko et al. have found that practitioners consider
reviews with more thorough feedback as higher quality re-
views [37].

Continuous Integration and Code Reviews. Lions’ share
of the aforementioned studies of CI have investigated the
impact of CI on technical aspects of the software development

process, such as the frequency of commits or the number of
bugs. Little attention has been given to the impact of CI on
the social aspects of software development. Notable exceptions
are recent works of Rahman and Roy [38] and and Zampetti
et al. [39].

First, Zampetti et al. [39] have focused on discussions of
pull requests leading to a build failure indicated by CI. The
authors have created an extensive taxonomy of the topics being
discussed with the test case failures and static analysis issues
being responsible for most build failures. As opposed to this
work we consider all pull request discussions rather than those
of pull requests leading to a build failure. Moreover, we study
how the discussion takes place (e.g., the number of comments)
rather than what is being discussed (topics).

Second, Rahman and Roy [40] have observed that pull
requests in projects that use CI (Travis-CI, Jenkins, and
CircleCI) are more likely to be reviewed than projects that do
not use CI, and that pull requests for which CI reports success,
are associated with the largest amount of code reviews. The
authors have compared projects using CI with those not using
CI, and as such validity of their results might have been
affected by project-specific differences. Indeed, larger projects
or more mature projects might opt for CI and at the same
time might be more successful in attracting reviews for pull
requests. This is why in statistical modeling in Section IV we
consider multiple control variables and explicitly take project-
specific differences into account.

III. RESEARCH QUESTIONS

As discussed above, during a pull request review the com-
munication between the author and the reviewers is very im-
portant. The comments give the author a chance to justify their
proposed changes, and enable reviewers to express doubts, or
to request changes, to the change set under review [41]. How-
ever, with the introduction of continuous integration the status
of some aspects of the pull request under review is commu-
nicated by the CI service and the different signals associated
with it on GITHUB. Therefore, we expect that maintainers
need to report and discuss these topics less frequently, which
could indicate a reduction in the amount of communication
needed during pull request reviews. A reduction in the number
of comments required to finishing reviewing a pull request
should help maintainers that are struggling with large numbers
of changes that they have to review [12]. Therefore, we ask:
RQ1: How does the amount of communication during pull
request reviews change with the introduction of CI?

While the discussion between the pull request submitter and
the project maintainers is important to clarify the submitter’s
intent and the quality and fit of their contribution, the review
would not be complete without modifications made to the
actual pull request contribution, whenever needed. When a
pull request is submitted, the author signals that the proposed
change is ready to be reviewed and integrated. Ideally, no
changes would be needed after this point, however, it is not
unusual for maintainers to request updates from the author,
and for the author to implement these requested changes. For

Figure 1. Anonymized fragment of a GITHUB pull request review. Usernames
and avatars have been masked in this screenshot to safeguard the privacy of
the authors. Blue is the submitter, red and gray are the reviewers.

continuous integration to reduce maintainer effort, its results
would need to be not just visible, but also acted upon by the
pull request submitters. Therefore, we ask:
RQ2: How does the amount of updates to pull requests after
they have been opened change with the introduction of CI?

IV. METHODS

The key idea behind our analysis is to collect longitudinal
data for different outcome variables and treat the adoption
of the Travis-CI service by each project in our sample as
an ‘intervention’. This way, we can align all the time series
of project-level outcome variables on the intervention date,
and compare their evolution before and after adopting CI; this
research design is known as a Regression Discontinuity Design
(RDD) or an Interrupted Time Series Design. This section
details the different steps involved.

A. Dataset

We assembled a dataset of code reviews (pull request dis-
cussions) from a sample of GITHUB open-source projects that
adopted Travis-CI as their sole CI service at some point in their
history. GITHUB is currently the largest platform for hosting
open-source development, with over 100 million repositories
at the time of writing. Travis-CI is the most popular cloud-
based CI service used on GITHUB.

To compose our study sample, we start from a list by Zhao
et al. [8] of the 17,000 oldest GITHUB repositories to have
adopted Travis-CI at some point. We then filter this list to
keep projects with a long history available for our analysis—
we select repositories with at least 1,000 total pull request
comments recorded over their lifetime. Finally, we use the

Figure 2. Code review comments on a pull request are attached to specific
lines of code. As above blue is the author of the changes, while gray is the
reviewer.

commit status context feature of GITHUB2 to identify, and
filter out, projects that also used other CI services besides
Travis-CI, to remove potential confounding factors associated
with such multiple-CI usage. Our final dataset contains 685
GITHUB projects, collectively accounting for 1,214,826 pull
requests and 5,150,112 commits.

For each repository, we then collect data on all its pull
requests and pull request commits, as well as two types of
pull request comments: general comments (Figure 1), typically
reflecting a higher level discussion between the author and re-
viewers, and review comments (Figure 2), which are associated
with specific lines of code. Both types of comments represent
code review communication between the pull request submitter
and the project maintainers, and both represent types of effort
that must typically be spent while evaluating pull requests. We
compute all variables described below from these raw data.

B. Operationalization

Our statistical analysis (details below) uses multivariate
regression modeling to test for the presence of association
between the use of CI and changes in maintainers’ code
review effort (RQ1) and the outcome of this effort (RQ2). We
compute multiple response variables to operationalize these
concepts. We also compute several control variables to account
for known co-variates.

1) Response variables: We operationalize code review ef-
fort (RQ1) in terms of three variables that measure the volume
of communication expended during pull request reviews. We
operationalize the outcome of this effort (RQ2) in terms of one
variable that measures the amount of changes made to pull
requests after opening, which typically happens in response
to the reviewers’ comments. We compute all variables at the
level of individual pull requests, then later aggregate them at
project level, per time window (Section IV-C). The raw data
comes from the GITHUB API.

2https://developer.github.com/v3/repos/statuses/

• ReviewComments (RQ1): Total number of review com-
ments per pull request; available from the raw data.

• GeneralComments (RQ1): Total number of general com-
ments per pull-request; available from the raw data.

• EffectiveComments (RQ1): Total number of change-
inducing review comments per pull-request. Here we
follow Bosu et al. [35] to approximate whether review
comments are effective. In their study of practitioners at
Microsoft, the authors found that one of the strongest
predictors of the effectiveness of a code review comment
is whether the comment induces a subsequent change.
In our case, we label a review comment as a change-
inducing comment if the lines of code the comment is
linked to were changed by a commit posted on the same
pull request branch after the creation date of that review
comment.
The procedure used to identify effective comments is not
described by Bosu et al. [35]. Hence, given the scraped
data from GITHUB we have devised the algorithm in
Figure 4 to detect effective comments in our dataset.

• CommitsAfterCreate (RQ2): Total number of commits
in the pull request that were authored after opening the
pull request.

2) Control variables: We also measure known co-variates
for each pull request:

• Project name: GITHUB slug of the project to which the
pull request belongs. We use the slug to model project
specific behavior as a random effect (details below).

• Language: Dominant programming language of the pro-
ject as reported by GITHUB; similarly used as a random
effect.

• Additions: Number of lines added in the pull request.
As more lines are added we expect that more effort is
required to review the modifications.

• Deletions: Number of lines deleted in the pull request.
Similar rationale as Additions.

• ChangedFiles: Number of files modified in the pull
request. As more files are modified we again expect more
review activity and therefore more comments and changes
during the pull-request.

• Assignees: Number of users assigned to the pull request
as reviewers. As more people are assigned as reviewers, it
is more likely that they contribute to the discussion, and
therefore we expect this feature to impact the dependent
variables.

• Commits: Total number of commits in the pull request.
More commits indicate more code churn, therefore we
expect more reviewing activity and in turn an effect on
the dependent variables.

C. Time Series

A key decision point in our study design is how to assemble
the different variables computed at the level of individual
pull requests into a time series suitable for RDD modeling.
The RDD analysis is typically set up such that each project

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

Period in months, intervention period is marked by the blue tick

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
ea

n
n

u
m

b
er

of
ge

n
er

al
co

m
m

en
ts

Mean number of general comments per project per month
Color indicates the number of projects included in a single box

0.0

76.1

152.2

228.3

304.4

380.6

456.7

532.8

608.9

685.0

Figure 3. Mean number of pull request general comments per month per project around the introduction of CI (indicated by the blue tick). The color denotes
how many projects had at least one pull request with comments that month.

Given a pull-request with review comments and commits,
we order the comments and commits such that the oldest
comment or commit is first, then we iterate over them,
from oldest to newest.
• If the item is a comment:

– Record the file and line on which the comment has
been placed.

• If the item is a commit:
– If the lines and files modified by the commit intersect

with any of the recorded comments:
∗ Record all of the intersecting comments as effective

comments. Remove all of the intersecting com-
ments, so they cannot be considered twice.

– For every recorded comment we update its position
based on the files modified by the commit.
∗ If lines have been added by the commit above

a recorded comment the current position of the
comment is moved down by the number of added
lines. This is done for all recorded comments.

∗ If lines have been removed by the commits above
a recorded comment the current position of the
comment is moved up by the number of removed
lines. This is done for all recorded comments.

Figure 4. Algorithm used to extract effective-comments.

in the sample contributes a fixed and constant number of
observations in total, half of which are before and half after
the intervention; and each observation typically corresponds
to a fixed-length time window, e.g., Zhao et al. [8] consider
12 months before and 12 months after the intervention.

Following Zhao et al. [8], we also aggregate individual pull
request data in monthly time windows, i.e., we average the
values of the different variables across all pull requests of a
given project, that were opened during that calendar month.
However, we use the data to determine the number of monthly
windows to consider. Indeed, not all projects are continuously

active. To avoid statistical artifacts due to missing data, we
typically exclude all projects that are not active for the entire
length of the observation period, e.g., those that do not have
at least one pull request in each period. Having a longer
observation period is useful, to increase the reliability of the
inferred trends. However, the longer the observation period,
the fewer projects can be included in the analysis, as not all
projects will have been sufficiently active.

To determine an appropriate number of windows, we follow
Imbens and Lemieux [42] and plot heatmaps of the number
of projects that would remain part of our analysis for different
lengths of the observation period, and use these to inform our
decision. In the plots we include a six year time period per
project, where three years (36 months) lie before the point
at which CI was introduced, and three years (36 months) lie
after the introduction of CI. Each three-year time period is then
further divided into month-long buckets, and for each project
all pull requests are distributed over the buckets based on the
time the pull request was opened, e.g., if a pull request for
project p was opened one month after the project introduced
CI, it falls in the 38th bucket.

Figure 3 illustrates this process for the mean number of
general pull request comments per project per period. Overall,
we observe that more data is available post-CI than pre-CI.
However, this does not mean that not enough data is available
pre-CI, as for at least a year pre-CI there are 220 projects
per bucket. This is still a large enough amount of data to
fit an RDD model. Therefore, in our subsequent analysis we
model a period of 12 months before and 12 months after the
introduction of Travis-CI. In addition, similarly to Zhao et
al. [8] we exclude the period ranging from 15 days before to
15 days after the adoption of Travis-CI, to increase model
robustness to any instability during this transition period.
Figure 5 shows a trend plot for each dependent variables,
where the trend line is split around the month where Travis-CI
is introduced.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.0

0.5

1.0

1.5

2.0

2.5

3.0

General comments

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Review comments

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0

1

2

3

4

Effective Comments

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.0

0.5

1.0

1.5

2.0

2.5

Updates after create

Figure 5. Plots for each of the dependent variables, showing the trend of the variable one year before and after the introduction of Travis-CI. Each datapoint
represents a month of activity for a single project. The 13th month is the month in which Travis-CI was introduced. Each plot has two trend lines, the dashed
one capturing the trend before the introduction of Travis-CI, and the solid one capturing the trend after the introduction of Travis-CI.

D. Modeling Considerations

Regression Discontinuity Design (RDD) is a quasi-
experimental technique that is well suited to model the im-
pact of an intervention on a population, in a setting where
controlled experiments are not possible [43], [44]. To ac-
curately determine the impact of continuous integration on
code reviews we want to separate the actual intervention from
other effects. Using RDD we model our variables of interest
as a function of time, and we search for the presence or
absence of discontinuity around the point in time where CI
was introduced. To account for different behavior observed
across projects or programming languages [8], we model these
factors as random effects [45].

To model the adoption of Travis-CI, we model a boolean
flag intervention, set to 0 for the pre-CI periods, and to 1 for
the post-CI periods [46]. To capture trends before, and changes
in trend after the adoption of Travis-CI, we include two
additional independent variables in the regression model [46]:
time and time after intervention. The variable time models the
pre-CI trend as a discrete numerical variable. time captures the
period index, ranging from 1 to 12 pre-CI, and having a value
of 0 post-CI. The variable time after intervention is used to
model the trend post-CI in a similar fashion as time; the value
of the variable is 0 for all periods before the adoption of CI,
and ranges from 1 to 12 after the intervention.

We then estimate the model coefficients using the
lmerTest R package [47]. The model coefficients for the
different variables and the statistical significance of these
coefficients are used to determine whether the introduction
of CI had an immediate impact on the dependent variables

(immediate increase or drop, if the coefficient for inter-
vention is statistically significant and positive or negative,
respectively), and how the one-year trends in these variables
changed after the introduction of CI compared to before.
For example, a statistically significant and positive coeffi-
cient for time would indicate an increasing trend in the
dependent variable over the 12 months prior to adopting CI.
Similarly, a statistically significant and positive coefficient for
time after intervention would indicate an increasing trend in
the dependent variable over the 12 months after adopting CI.
The difference in magnitude between the coefficients for time
and time after intervention indicates how the pre-CI trend, if
any, changed after adopting CI.

As standard [48], we evaluate model fit using the marginal
R2

m (only fixed effects) and conditional R2
c scores (combined

fixed and random effects, analogous to the traditional R2 value
in linear models). Furthermore, we use ANOVA to estimate
the effect size of each variable, i.e., the fraction of the total
variance explained by the model that can be attributed to each
individual variable [49]. To prevent collinearity from affecting
our coefficient estimates, we exclude variables for which the
VIF score is higher than 5, as recommended by Sheater [50].

V. RESULTS

Recall, we model the change in response variables capturing
review effort (RQ1) and review outcome (RQ2) after the
adoption of Travis-CI. In this section we present the results of
the statistical models fit.

A. RQ1: Code Review Communication

1) General comments: We start by analyzing the trend in
general pull request comments. For this model, the dependent

Table I
ESTIMATED COEFFICIENTS AND STATISTICAL SIGNIFICANCE LEVELS FOR

THE RDD MODEL OF general PULL REQUEST COMMENTS.

Feature Coeffs. Sum sq.

Intercept*** 0.7698
Additions*** 0.0464 2.272
Deletions*** -0.0330 1.280
Commits*** -0.0726 1.225
Assignees*** 0.3057 2.705
ChangedFiles* -0.0419 0.390
CommitsAfterCreate*** 0.4922 47.699
TotalPrs*** 0.0006 1.155
time*** 0.0077 2.600
intervention** 0.0588 0.756
time after intervention*** -0.0073 1.071

*** p < 0.001, ** p < 0.01, * p < 0.05

variable is the mean number of general pull request comments
per repository per month, regressed on the other variables as
independent variables. These include the mean lines of code
added, the users assigned and the number of commits.

Table I shows the statistical significance and estimated
coefficients for each of the variables. In addition to that, it also
shows the sum of squares, or the amount of variance explained
by each variable. The marginal R2

m goodness of fit score (fixed
effects only) is 0.1168, while the conditional R2

c goodness
of fit score (fixed and random effects) is 0.5922, therefore,
when taking into account per repository and programming
language variability (the random effects) the model fits the
general comments data well.

From Table I we observe that all three RDD variables, used
to model trends over time and the intervention itself, have
statistically significant coefficients, indicating that the adoption
of Travis-CI is associated with changes in the number of
general pull request comments. This effects manifests itself as
a slight increase over time in the number of general comments
leading to the adoption of CI (the positive coefficient for the
time variable) and a level increase directly after the adoption
(the positive coefficient for the intervention variable), after
which the number of general comments decreases slightly over
time (the negative coefficient for the time after intervention
variable).

We also observe that all independent variables have stat-
istically significant coefficients in the model. The Commit-
sAfterCreate variable is especially notable, as it explains the
largest amount of variability in the model, indicating that
development activity during the lifetime of the pull request is
strongly associated with the amount of communication during
the pull request review. This is expected (hence the inclusion of
CommitsAfterCreate as a control variable), since updates to a
pull request after creation, through subsequent commits on that
respective branch, would likely generate additional discussion.

Table II
ESTIMATED COEFFICIENTS AND STATISTICAL SIGNIFICANCE LEVELS FOR

THE RDD MODEL OF LINE-LEVEL review COMMENTS.

Feature Coeffs. Sum sq.

Intercept* 0.0421
Additions*** 0.0488 3.056
Deletions -0.0050 0.030
Commits*** -0.0440 0.460
Assignees 0.0300 0.027
ChangedFiles*** -0.0424 0.407
CommitsAfterCreate*** 0.3672 29.973
TotalPrs** 0.0003 0.302
time*** 0.0057 1.437
intervention 0.0133 0.045
time after intervention** -0.0040 0.350

*** p < 0.001, ** p < 0.01, * p < 0.05

Overall, the model suggests that on average and while
controling for other variables such as pull request
updates after creation, there is less general discussion
of pull requests over time after adopting CI.

2) Review comments: Another operationalization of code
review communication effort is the amount of review com-
ments in pull requests, i.e., those comments attached to specific
lines of code in the pull request commits. Here we model the
mean number of review comments per month as the dependent
variable, while the other features are modeled as independent
variables. As above, project name and programming language
are modeled as random effects, to account for potential per
project and per language variability.

Table II presents the results of the fitted RDD model for
review comments. The marginal R2

m score of the model is
0.148, while the conditional R2

c score is 0.593, again indicating
good model fit. Analyzing the results in the table we observe
similar associations as in the case of the general pull request
comments model above. Specifically, there is an increasing
trend in the number of review comments before the adoption
of CI, which gets approximately reversed after CI is adopted
(comparable magnitude of positive and negative estimated
coefficients, before and after the intervention, respectively).

Other variables behave similarly as above. For example, we
note the strong effect of the CommitsAfterCreate variable. This
is expected as a likely trigger for modifications during the
lifetime of a pull request is the presence of review comments
by project maintainers, requesting changes from the author.

Overall, our conclusion is similar:

A previously increasing trend in the number of line-
level review comments made during pull request
reviews is, on average, reversed after CI adoption.

3) Effective comments: We also modeled the change in the
number of effective comments after adopting Travis-CI, i.e.,

Table III
ESTIMATED COEFFICIENTS AND STATISTICAL SIGNIFICANCE LEVELS FOR

THE RDD MODEL OF effective COMMENTS.

Feature Coeffs. Sum sq.

Intercept*** -0.1312
Additions*** 0.0273 0.986
Deletions*** -0.0153 0.287
Commits*** 0.1073 4.324
Assignees 0.0024 <0.001
ChangedFiles*** -0.0267 0.167
GeneralComments*** 0.0581 2.380
TotalPrs < 0.0001 0.021
time*** 0.0024 0.260
intervention 0.0009 <0.001
time after intervention*** -0.0030 0.196

*** p < 0.001, ** p < 0.01, * p < 0.05

those review comments that lead to a direct change in the code
under review [35], expressed as subsequent commits on the
same pull request branch. We fit an RDD model as described
above, having as dependent variable the mean number of
effective comments per repository per month, and with similar
independent and control variables as above. As before, the
project name and the dominant programming language have
been modeled as random effects.

Table III shows the slope estimates, the statistical signific-
ance levels, and the sum of squares for the fitted RDD model.
R2

m is 0.107, while R2
c is 0.425, indicating that the model fits

the data well.

The significant control variables in Table III are the features
which capture the activity seen within a single month. As
expected this indicates that when more files or more lines of
code are modified, and a pull request becomes more complex,
that more effective comments are being posted, indicating the
pull requests require more review.

Two of the three coefficients used to model the impact of CI
are also statistically significant. No immediate discontinuity is
observed after projects adopt CI. However, a positive trend
in the number of effective comments before the adoption of
Travis-CI is reversed: there is a steady decrease in the number
of effective comments after the adoption of CI.

A previously increasing trend in the number of
change-inducing review comments is, on average, re-
versed after CI adoption.

B. RQ2: Code Changes During Review

The results presented in the previous subsection paint a
consistent picture: the amount of discussion during pull request
reviews goes down over time after adopting CI. But could that
be explained by pull requests becoming less complex over
time, and thus requiring fewer changes?

The number of changes (commits) made during a pull
request can be considered as the net effect of the pull request

Table IV
ESTIMATED COEFFICIENTS AND STATISTICAL SIGNIFICANCE LEVELS FOR

THE RDD MODEL OF PULL REQUEST COMMITS.

Feature Coeffs. Sum sq.

Intercept*** -0.4357
Additions*** 0.0294 1.166
Deletions 0.0060 0.045
Commits*** 0.5237 105.467
Assignees** 0.0830 0.273
ChangedFiles*** -0.0749 1.348
TotalPrs <0.0001 0.033
GeneralComments*** 0.1505 16.903
time* 0.0019 0.155
intervention 0.0028 0.002
time after intervention -0.0017 0.067

*** p < 0.001, ** p < 0.01, * p < 0.05

review. Typically, by opening the pull request the author
signals that they are done with the work. Any changes made
during the review are either at the request of reviewers, or
might be triggered by continuous integration when a build
fails. Therefore, we model whether CI impacts the number of
commits made during a pull request review. As before, we fit
an RDD model with general activity metrics as controls and
random effects for project name and dominant programming
language. The results of the fitted model are shown in Table
IV. The marginal goodness of fit score R2

m has a value of
0.547, while the conditional goodness of fit score R2

c has a
value of 0.658, indicating that the model fits well.

From Table IV we observe that the introduction of Travis-CI
is not statistically associated with the number of added com-
mits during a pull request review. No immediate discontinuity
is observed for repositories on the introduction of CI. Notably,
unlike the previous models of discussion comments discussed
above, there is no decreasing trend after the adoption of CI.
We conclude that:

On average, the outcome of the pull request re-
view process, measured in terms of subsequent code
changes made during a pull request review, does not
change after adopting CI.

VI. DISCUSSION

By modeling both the pre and post CI adoption code review
history of a large sample of open-source repositories we find
that the communication between reviewers and author starts
to gradually decrease after the adoption of Travis-CI (RQ1).
In a way, the reviewers hand-off a set of their tasks to the
automated checks performed by CI. The output of these checks
is visible through user interface signals on GITHUB (e.g., or

, or) and accessible through the CI
service, instead of a comment manually posted by a reviewer.

In different models related to the code review commu-
nication (RQ1) we see that R2

m ' 0.1, while R2
c ranges

between 0.4 and 0.6. This means that project-to-project and

language-to-language differences, modeled as random effects,
are responsible for most of the explained variability.

Using the estimated coefficients of the models we can
compute the net communication effort savings effect of using
CI. The regression discontinuity design framework allows us
to assume that the pre-intervention trend would have continued
unchanged after the adoption of continuous integration, if CI
had no effect. In addition, the multiple regression modeling
framework allows us to assume that the other independent
variables remain constant. Therefore, we construct two sur-
rogate data points, where one data point is constructed such
that it simulates the progression of reviewing practices before
CI adoption, and the second data point simulates the impact
of the adoption of CI on the reviewing practices. We then use
the previously fitted models to predict the mean number of
general and review comments for those two data points. The
delta in number of comments between these two data points
measures, thus, the impact of CI.

To this end, to construct these two surrogate data points we
take the median value for the numerical variables. Furthermore
we assign both data points to the same random programming
language and project, to ensure that the already fitted models
can account for the random effects. For the non-CI data-point
we set time to 24, intervention to 0 and time after intervention
to 0, such that we simulate a year of continued code reviews
with no CI. Conversely, the second data point has time set to
0, intervention set to 1, and time after intervention set to 12,
simulating the progression of a year of code review activity
post-CI. Applying this technique for general comments we
find that a year post-CI the median pull request review has
approximately .5 general comments less, and approximately .2
line-level review comments less. That is, on average CI saves
up to one review comment per pull request. To provide some
context for these savings, the average pull-request for the set
of projects that was analyzed has a mean number of 3 general
comments, and 1.5 review comments. Therefore, the reduction
in the number of comments is on average quite substantial for
the projects in the dataset.

This apparent hand-off gives rises to the idea of continuous
integration as a silent helper, where some of the tasks tradi-
tionally executed by human reviewers are now carried out by
CI, leading to less discussions in code reviews. Furthermore,
from earlier work we know that projects can process more
outside contributions after the adoption of CI without any
change in code quality [7]. This would indicate that code
quality is safeguarded while adopters of CI can review and
process more pull requests. The fact that we find that less
communication is required for maintainers to process pull
requests could be the reason why more outside contributions
can be processed. Furthermore, the fact that less time is spent
reviewing can further help maintainers prioritize pull requests,
and further improve open-source projects [12].

Secondly, we observe that the number of change-inducing
requests by maintainers also starts to decrease post CI (RQ1),
while the number of changes made to the pull request code
during the review process does not decrease (RQ2). This

difference in effects observed further supports the idea of
CI as a silent helper; less comments by reviewers are re-
quired to maintain the same level of quality as continuous
integration supports maintainers by automating certain checks.
Hence, maintainers can save themselves effort by adopting CI.
The work that they then save because continuous integration
performs some of the tasks traditionally executed by manual
reviewers can be invested in other activities.

Moreover, Ram et al. state that conformance of the code
under review to the project style guides improves reviewability
of the source-code [51]. Linters, and other static code analysis
tools, can be integrated in the automated checks performed
by the CI service. A manual inspection of some of the CI
configurations shows that there are indeed projects which use
static analysis tools. Furthermore, Zampetti et al. [52] found
that static code analysis tools are used as part of the CI process
for several Java projects. Conformance of the source code to
the project style guide can be enforced using static analysis
tools, and this could further help shift effort from manual
review efforts to automated checks.

VII. THREATS TO VALIDITY

We note several threats to the internal, external, and con-
struct validity of our study [53].

A. Internal Validity

For this study we applied quantitative methods. Using this
approach we found that over time fewer comments are posted
after the introduction of continuous integration. Our results
could be strengthened with qualitative methods, e.g., inter-
views, to determine how reviewers and pull request authors
experience the role and benefits of CI. However, even though
we used only quantitative methods, our statistical analysis
follows state-of-the-art methods (RDD) and modeling best
practices, as advocated by Wieringa [54]. Furthermore, we
measure the conditional model fit to verify that the fitted
models match the data well and can indeed be used to test
the impact of CI on the dependent variables.

To ensure that there are no confounding factors several
controls that might influence the independent variables have
been added. However, in addition to the already identified
dependent variables there might also be other factors that
influence code reviewing practices. These factors could include
an increase in testing, or the adoption of TDD, which might
also influence code reviewing practices. Moreover, we exclude
projects that adopt other CI services, however, it has been
found that Travis-CI is less suited for for instance Windows
development [6].

Moreover the operationalization chosen to measure whether
a review comment is effective, i.e., change inducing, is depend-
ent on how well GITHUB preserves code review history. Our
algorithm to determine whether a review comment is change
inducing recreates a timeline of events that occur during a pull
request review such that the review comments that triggered a
commit can be found. However, during a pull request review
practitioners can directly use git to rewrite the public history,

for instance by force pushing or squashing commits. If this
occurs during the lifetime of a pull request on GITHUB,
and GITHUB does not preserve the original commits, then
the algorithm may not accurately find effective comments.
Therefore, for projects which regularly apply public history
rewriting during code reviews the number of change-inducing
comments reported might be lower than the actual number of
change-inducing comments.

B. External Validity

Code review data has been collected from a single platform,
GITHUB. However, GITHUB is not the only platform with
publicly accessible code review data. For example, other
platforms such as BitBucket, GitLab, and on-premise
Gerrit installations all have code review data available.
Secondly the project selection and sampling strategy serves
to ensure only active, collaborative, open-source software
projects are analyzed.

Both these choices may impact the generalizability of
this study. For instance, if another platform integrates CI
differently from GITHUB, other effects might be observed.
Secondly, the criteria used to filter out inactive, or non-
collaborative projects may introduce bias; Work by Munaiah
et al. [55] has shown that the recall of such filtering techniques
can be 30% or lower. Therefore, there could be a class
of smaller yet active and collaborative open-source software
projects which we are not represented in our study. These
projects may use a different continuous integration configur-
ation, or they may use a more informal code review process,
potentially experiencing the benefits of CI observed in this
study differently. Therefore, both the platform selection and
project filtering might impact the external validity of this study.

However, our study is representative for many projects
hosted on GITHUB; moreover, platforms such as BitBucket
and GitLab offer similar features related to code reviews
and CI, hence we expect also similar code review processes
on these platforms. Finally, the filtering criteria ensure that
the projects we have analyzed are representative of larger,
active and collaborative projects. While our findings might not
generalize to all software projects that adopt CI, they may well
generalize to the larger and more active open-source projects.

C. Construct Validity

The variables used in the RDD models are proxies used to
model the interactions that occur during a pull request review.
However, such variables as the number of review and general
comments do not necessarily capture all communication, and
therefore these proxies might not completely capture the full
effort of reviewers. For instance, we do not take into account
the length of a comment, nor do we test whether developers
communicate over other channels such as instant messaging
apps.

Secondly, we also use the number of code changes during
a review as a proxy for reviewing effort. However, we do not
take into account the actual effort that went into authoring
the change, as this information is not available on GITHUB.

Moreover, the number of additions, deletions, and changed
files as reported by GITHUB also include changes that do not
affect the source code. This could include whitespace changes
or modifications to non source-code files.

The notion of effective comments has been adapted from
the work by Bosu et al. [35]. However, to the best of our
knowledge no other work has attempted to adapt the notion
of effective comments to GITHUB repositories. Due to several
differences between the code review tool at Microsoft and the
pull requests of GITHUB it was not possible to maintain the
definition proposed by Bosu et al. exactly; instead, we have
opted to simplify their definition. This simplification might
introduce both false positives and false

VIII. CONCLUSION

In this paper we present an exploratory empirical study
investigating the effects of Continuous Integration on open-
source code reviews. Literature has described both the modern
code review process as it has been adopted by open-source
software projects, and the impacts of adopting continuous
integration on development practices. To the best of our
knowledge the intersection of these topic has not yet been
analyzed. We believe that because of the social aspect of
code reviews the impact of continuous integration on code
reviews is particularly interesting. To understand this impact
we have analyzed a large sample of open-source software
projects hosted on GITHUB.

We formalized two research questions focusing on whether
communication during a code review is affected by continu-
ous integration, and whether the number of changes made
during a code review is affected by Continuous Integration.
By modeling code review data around the introduction of
Continuous Integration we find that the number of comments
per code review decreases after to the adoption of continuous
integration, while the number of changes made during a code
review remains constant. Using the fitted models we determine
that on average a code review a year after the introduction of
continuous integration has roughly half a general comment
less (RQ1). Meanwhile, we find no such effect for changes
made during a code review (RQ2).

Our findings are important in determining the benefit of
Continuous Integration for practitioners. It is known that
reviewers can be overwhelmed by the number of changes
that require a review, and that this overload leads to external
contributions being ignored [12], [56]. Therefore, for projects
that struggle with the workload imposed by having to review
external contributions adopting continuous integration can be
a valuable time-saver.

The role fulfilled by continuous integration for open-source
projects has been reported on before [4], [7], [8], [38]. Further-
more, given the signals associated with continuous integration,
and the fact that continuous integration on average saves half
a general comment per code review, we posit that continuous
integration fulfills the role of a silent helper. Through the
signals posted by Travis-CI it is present for all code reviews,
and more importantly continuous integration helps reviewers

save a measurable and significant amount of effort. However,
continuous integration itself does not become a part of the
discussion, as Travis-CI does not post any comments to code
reviews.

ACKNOWLEDGEMENTS

Vasilescu gratefully acknowledges support from the Na-
tional Science Foundation (award 1717415).

REFERENCES

[1] M. Fowler, “Continuous integration (original version),” https://
martinfowler.com/articles/originalContinuousIntegration.html, 2000.

[2] R. O. Rogers, “Scaling continuous integration,” in International Con-
ference on Extreme Programming and Agile Processes in Software
Engineering. Springer, 2004, pp. 68–76.

[3] P. M. Duvall, S. Matyas, and A. Glover, Continuous integration:
improving software quality and reducing risk. Pearson Education, 2007.

[4] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,”
in International Conference on Automated Software Engineering (ASE).
ACM, 2016, pp. 426–437.

[5] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-offs
in continuous integration: assurance, security, and flexibility,” in Joint
Meeting on Foundations of Software Engineering (ESEC/FSE). ACM,
2017, pp. 197–207.

[6] D. G. Widder, M. Hilton, C. Kästner, and B. Vasilescu, “A conceptual
replication of continuous integration pain points in the context of
Travis CI,” in Joint Meeting on Foundations of Software Engineering
(ESEC/FSE). ACM, 2019, pp. 647–658.

[7] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in github,” in
Joint Meeting on Foundations of Software Engineering (ESEC/FSE).
ACM, 2015, pp. 805–816.

[8] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu, “The
impact of continuous integration on other software development prac-
tices: A large-scale empirical study,” in International Conference on
Automated Software Engineering (ASE). IEEE, 2017, pp. 60–71.

[9] C. Vassallo, S. Proksch, H. C. Gall, and M. Di Penta, “Automated
reporting of anti-patterns and decay in continuous integration,” in
International Conference on Software Engineering (ICSE). IEEE, 2019,
pp. 105–115.

[10] G. Bavota and B. Russo, “Four eyes are better than two: On the
impact of code reviews on software quality,” in 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2015, pp.
81–90.

[11] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “An empirical
study of the impact of modern code review practices on software
quality,” Empirical Software Engineering, vol. 21, pp. 2146–2189, 2016.

[12] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen, “Work
practices and challenges in pull-based development: The integrator’s per-
spective,” in International Conference on Software Engineering (ICSE).
IEEE, 2015, pp. 358–368.

[13] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: A case study at google,” in Proceedings of
the 40th International Conference on Software Engineering: Software
Engineering in Practice. ACM, 2018, pp. 181–190.

[14] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 2013 International
Conference on Software Engineering. IEEE Press, 2013, pp. 712–721.

[15] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion in code
reviews: Reasons, impacts, and coping strategies,” in 26th IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering,
X. Wang, D. Lo, and E. Shihab, Eds. IEEE, 2019, pp. 49–60.

[16] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
github: transparency and collaboration in an open software repository,”
in ACM Conference on Computer Supported Cooperative Work and
Social Computing (CSCW). ACM, 2012, pp. 1277–1286.

[17] A. Trockman, S. Zhou, C. Kästner, and B. Vasilescu, “Adding sparkle to
social coding: an empirical study of repository badges in the npm eco-
system,” in International Conference on Software Engineering (ICSE).
ACM, 2018, pp. 511–522.

[18] B. Vasilescu, S. van Schuylenburg, J. Wulms, A. Serebrenik, and
M. G. J. van den Brand, “Continuous integration in a social-coding
world: Empirical evidence from github,” in 2014 IEEE International
Conference on Software Maintenance and Evolution, 2014, pp. 401–
405.

[19] S. Stolberg, “Enabling agile testing through continuous integration,” in
2009 Agile Conference, 2009, pp. 369–374.

[20] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-
offs in continuous integration: Assurance, security, and flexibility,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, 2017, pp. 197–207.

[21] R. Pham, L. Singer, O. Liskin, F. F. Filho, and K. Schneider, “Creating a
shared understanding of testing culture on a social coding site,” in 2013
35th International Conference on Software Engineering (ICSE), 2013,
pp. 112–121.

[22] T. Rausch, W. Hummer, P. Leitner, and S. Schulte, “An empirical
analysis of build failures in the continuous integration workflows of
java-based open-source software,” in 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR), 2017, pp. 345–355.

[23] Y. Yu, G. Yin, T. Wang, C. Yang, and H. Wang, “Determinants of pull-
based development in the context of continuous integration,” Science
China Information Sciences, vol. 59, p. 080104, 2016.

[24] M. E. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Syst. J., vol. 15, pp. 182–211, 1976.

[25] A. F. Ackerman, L. S. Buchwald, and F. H. Lewski, “Software inspec-
tions: an effective verification process,” IEEE Software, vol. 6, 1989.

[26] M. E. Fagan, Advances in Software Inspections. Springer Berlin
Heidelberg, 1986, pp. 335–360.

[27] P. M. Johnson, “Reengineering inspection,” Commun. ACM, vol. 41, pp.
49–52, 1998.

[28] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey, “Investigating
technical and non-technical factors influencing modern code review,”
Empirical Software Engineering, vol. 21, pp. 932–959, 2016.

[29] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, “Wait for
it: Determinants of pull request evaluation latency on github,” in 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories,
2015, pp. 367–371.

[30] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion detection
in code reviews,” in 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2017, pp. 549–553.

[31] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: which problems do they fix?” in
Proceedings of the 11th Working Conference on Mining Software Re-
positories. ACM, 2014, p. 202211.

[32] J. Tsay, L. Dabbish, and J. Herbsleb, “Let’s talk about it: Evaluating
contributions through discussion in GitHub,” in Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 144–154.

[33] A. Alami, M. L. Cohn, and A. Wasowski, “Why does code review work
for open source software communities?” in International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 1073–1083.

[34] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes?: An exploratory study in industry,”
in Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering. ACM, pp. 51:1–51:11.

[35] A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code
reviews: An empirical study at microsoft,” in Proceedings of the 12th
Working Conference on Mining Software Repositories. IEEE Press,
2015, pp. 146–156.

[36] L. MacLeod, M. Greiler, M. Storey, C. Bird, and J. Czerwonka,
“Code reviewing in the trenches: Challenges and best practices,” IEEE
Software, vol. 35, pp. 34–42, 2018.

[37] O. Kononenko, O. Baysal, and M. W. Godfrey, “Code review quality:
How developers see it,” in Proceedings of the 38th International
Conference on Software Engineering. ACM, 2016, pp. 1028–1038.

[38] M. M. Rahman and C. K. Roy, “Impact of continuous integration
on code reviews,” in International Conference on Mining Software
Repositories, 2017, pp. 499–502.

[39] F. Zampetti, G. Bavota, G. Canfora, and M. Di Penta, “A study on
the interplay between pull request review and continuous integration
builds,” in International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2019, pp. 38–48.

[40] A. Rahman, A. Agrawal, R. Krishna, and A. Sobran, “Characterizing
the Influence of Continuous Integration: Empirical Results from 250+
Open Source and Proprietary Projects,” in Proceedings of the 4th ACM
SIGSOFT International Workshop on Software Analytics. ACM, 2018,
pp. 8–14.

[41] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Communicative
intention in code review questions,” in 2018 IEEE International Con-
ference on Software Maintenance and Evolution, 2018, pp. 519–523.

[42] “Regression discontinuity designs: A guide to practice,” Journal of
Econometrics, vol. 142, pp. 615 – 635, 2008.

[43] D. L. Thistlethwaite and D. T. Campbell, “Regression-discontinuity
analysis: An alternative to the ex post facto experiment.” Journal of
Educational Psychology, vol. 51, pp. 309–317, 1960.

[44] T. Cook and D. Campbell, Quasi-Experimentation: Design and Analysis
Issues for Field Settings. Houghton Mifflin, 1979.

[45] A. Galecki and T. Burzykowski, Linear Mixed-Effects Models Using R:
A Step-by-Step Approach. Springer Publishing Company, Incorporated,
2013.

[46] A. K. Wagner, S. B. Soumerai, F. Zhang, and D. Ross-Degnan, “Segmen-
ted regression analysis of interrupted time series studies in medication
use research,” Journal of Clinical Pharmacy and Therapeutics, vol. 27,
pp. 299–309, 2002.

[47] A. Kuznetsova, P. B. Brockhoff, and R. H. B. Christensen, “lmerTest
package: Tests in linear mixed effects models,” Journal of Statistical
Software, vol. 82, no. 13, pp. 1–26, 2017.

[48] S. Nakagawa and H. Schielzeth, “A general and simple method for
obtaining r2 from generalized linear mixed-effects models,” Methods

in Ecology and Evolution, vol. 4, pp. 133–142, 2013.
[49] J. Kaufmann and A. Schering, Analysis of Variance ANOVA. American

Cancer Society, 2014.
[50] S. Sheather, A Modern Approach to Regression with R, ser. Springer

Texts in Statistics. Springer New York, 2009. [Online]. Available:
https://books.google.nl/books?id=zS3Jiyxqr98C

[51] A. Ram, A. A. Sawant, M. Castelluccio, and A. Bacchelli, “What
makes a code change easier to review: An empirical investigation on
code change reviewability,” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. ACM, 2018, pp. 201–212.

[52] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. Di Penta,
“How open source projects use static code analysis tools in continuous
integration pipelines,” in International Conference on Mining Software
Repositories (MSR). IEEE, 2017, pp. 334–344.

[53] D. E. Perry, A. A. Porter, and L. G. Votta, “Empirical studies of software
engineering: A roadmap,” in Proceedings of the Conference on The
Future of Software Engineering. ACM, 2000, pp. 345–355.

[54] R. J. Wieringa, Abductive Inference Design, 2014, pp. 177–199.
[55] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for

engineered software projects,” Empirical Software Engineering, vol. 22,
pp. 3219–3253, 2017.

[56] P. C. Rigby and M.-A. Storey, “Understanding broadcast based peer
review on open source software projects,” in 2011 33rd International
Conference on Software Engineering, 2011, pp. 541–550.

